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Abstract—We study the longitudinal, transverse, and mixed ray transforms acting on two-dimen-
sional symmetric 2-tensor fields. Namely, the kernels of the ray transforms are described; the
connection between the ray transforms and the Radon transform is established; some unconditional
estimates of stability for each of the ray transforms are obtained; inversion reconstruction formulas
for the components of the symmetric 2-tensor and for the recovery of the potential are deduced; and
the projection theorems for the ray transforms are proved as well.
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In inverse problems, the sought quantities are often not scalar functions but vector or tensor fields
of different valences. Such are the statements of a number of problems in the theory of nonhomoge-
neous and anisotropic media, gas dynamics, hydrodynamics, and electrodynamics. The mathematical
statements of the problems of reconstructing vector and tensor fields appeared relatively recently (for
example, see [1]). Their further development led to the formulation of inverse problems with tomographic
data type, which are natural to consider as applications of the integral geometry of scalar [2] and tensor
fields on a Riemannian manifold [3]. The properties of the Radon transform (the ray transform of scalar
fields) are well known and are described, for example, in [4]. At the same time, the properties of ray
transforms acting on tensor fields are not completely studied.

In [3], the properties were investigated of the longitudinal ray transform acting on symmetric tensor
fields of an arbitrary valence m in media with refraction. It was proved in particular that the kernel
consists of the potential fields with potentials vanishing on the boundary, and the estimates of stability
were given which are conditional for m ≥ 1. The componentwise inversion formulas were obtained in the
case of the Euclidean metric.

Note the article [5] which provides a study of the properties of the longitudinal and transverse ray
transforms acting on two-dimensional vector fields. It was proved in [5] that the kernel of the transverse
ray transform consists of the solenoidal vector fields with potentials vanishing on the boundary. In the
case of the Euclidean metric, the connection between the longitudinal and transverse ray transforms
and the Radon transform was pointed out, unconditional stability estimates for both ray transforms
were obtained, inversion formulas for the reconstruction of the components of the vector field and the
reconstruction of the potential were written.

In practice, all fields studied by the tomographic methods belong to a bounded domain. Namely, it is
assumed that the field is identical zero outside the domain. In the present article, we investigate the
properties of the operators of the longitudinal, transverse, and symmetric ray transforms acting on the
two-dimensional symmetric 2-tensor fields defined on the unit circle in the case of the Euclidean metric.
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1. DEFINITIONS

Consider the cylinder Z = [−1, 1] × [0, 2π] and the unit disk B = {x ∈ R
2 | (x1)2 + (x2)2 < 1} with

the boundary ∂B = {x ∈ R
2 | (x1)2 + (x2)2 = 1}.

1.1. The Spaces Used

Let f(x), g(x), . . . denote the functions (scalar fields) and let ϕ(x), ψ(x), φ(x), . . . designate the
potential defining vector and 2-tensor fields. The set of symmetric m-tensor fields w(x) = (wi1...im(x)),
u(x) = (ui1...im(x)), v(x) = (vi1...im(x)), . . . , where i1, . . . , im = 1, 2, defined in B is denoted by Sm(B)
(in this article, m = 0, 1, 2). The scalar product in Sm(B) is introduced by the formula

〈u(x), v(x)〉 = ui1...im(x)vi1...im(x).

Henceforth, repeated super- and subscripts in a monomial imply summation from 1 to 2. Recall that,
in a Euclidean space with a Cartesian rectangular coordinate system, there is no difference between
contravariant and covariant components.

We need the spaces of square integrable functions L2(B) and symmetric m-tensor fields L2(Sm(B))
as well as the L2(Z) space. The inner product on L2(Sm(B)) is defined as

(u, v)L2(Sm(B)) =
∫

B

〈u(x), v(x)〉 dx.

The spaces of differentiable symmetric m-tensor fields with finite order k are designated by Ck(Sm(B))
and Ck

0 (Sm(B)); the Sobolev spaces are denoted by Hk(Sm(B)), Hk
0 (Sm(B)), and Hk(Z). Denote the

space of infinitely differentiable functions by C∞(B).

1.2. Differential Operators

The operators of inner differentiation d and inner ⊥-differentiation d⊥ are the compositions of
operators of covariant derivation and symmetrization

d, d⊥ : Hk(Sm(B)) → Hk−1(Sm+1(B))

and act on a function f and a vector field v by the rules

(df)i =
∂f

∂xi
, (dv)ij =

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
,

(d⊥f)i = (−1)i
∂f

∂x3−i
, (d⊥v)ij =

1
2

(
(−1)j

∂vi

∂x3−j
+ (−1)i

∂vj

∂x3−i

)
.

The divergence operator δ : Hk(Sm(B)) → Hk−1(Sm−1(B)) acts on a vector field v and on a sym-
metric 2-tensor field w by the formulas

δv =
∂vj

∂xj
, (δw)i =

∂wij

∂xj
. (1)

Recall that an m-tensor field u ∈ Hk(Sm(B)) is called potential if there exists an (m − 1)-tensor
field v ∈ Hk+1(Sm−1(B)) (a potential) such that u = dv. A field w ∈ Hk(Sm(B)) is called solenoidal
if δw = 0 ∈ Hk−1(Sm−1(B)). Every two-dimensional solenoidal symmetric tensor field can be repre-
sented by means of one function [6]. In particular, for every solenoidal two-dimensional vector field
v ∈ Hk(S1(B)), there exists a potential ψ ∈ Hk+1(B) such that d⊥ψ = v; and every solenoidal two-
dimensional 2-tensor field u ∈ Hk(S2(B)) can be represented as u = (d⊥)2ψ for some ψ ∈ Hk+2(B)
(which is checked by insertion into (1)).

It is known [3] that, for every w ∈ Hk(Sm(B)), there exists a solenoidal tensor field v ∈ Hk(Sm(B))
and a potential u ∈ Hk+1(Sm−1(B)) such that

w = v + du, u|∂B = 0, δv = 0. (2)
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This decomposition is unique.

Using (2) for m = 1 and m = 2, the theorem on the decomposition of a vector field [7], and the
representation of a solenoidal vector field in terms of the potential, we obtain one of the versions of
a decomposition of a symmetric 2-tensor field. We have the unique decomposition for every 2-tensor
field u ∈ L2(S2(B)):

u = d2ϕ + dd⊥φ + (d⊥)2ψ, ϕ, φ, ψ ∈ H2(B), (3)

ϕ|∂B =
∂ϕ

∂x1

∣∣∣∣
∂B

=
∂ϕ

∂x2

∣∣∣∣
∂B

= 0,
∂φ

∂x1

∣∣∣∣
∂B

=
∂φ

∂x2

∣∣∣∣
∂B

= 0. (4)

In the present article, we consider only the fields for which the potentials ϕ, φ, and ψ in (3) and (4)
vanish on ∂B together with their first derivatives; i.e., ϕ, φ, ψ ∈ H2

0 (B).

1.3. The Radon Transform and the Ray Transforms

The Radon transform of a function f is the operator R : Hk(B) → Hk(Z) defined as

(Rf)(s, θ) =

∞∫

−∞

f(tξ + sη) dt =

√
1−s2∫

−
√

1−s2

f(tξ + sη) dt.

Here ξ = (− sin θ, cos θ) is the direction vector of the straight line along which integration is carried out;
and η = (ξ2,−ξ1) = (cos θ, sin θ) is the normal vector.

The longitudinal P, transverse P⊥, and mixed P� ray transforms

P,P⊥,P� : Hk(S2(B)) → Hk(Z)

of a symmetric 2-tensor field w are defined as

(Pw)(s, θ) =

∞∫

−∞

wij(tξ + sη)ξiξj dt =

√
1−s2∫

−
√

1−s2

wij(tξ + sη)ξiξj dt,

(P⊥w)(s, θ) =

∞∫

−∞

wij(tξ + sη)ηiηj dt =

√
1−s2∫

−
√

1−s2

wij(tξ + sη)ηiηj dt,

(P�w)(s, θ) =

∞∫

−∞

wij(tξ + sη)ηiξj dt =

√
1−s2∫

−
√

1−s2

wij(tξ + sη)ηiξj dt.

2. PROPERTIES OF THE RAY TRANSFORMS

The kernels of the ray transforms of 2-tensor fields satisfy

Theorem 1. The following hold for every function ϕ ∈ H2
0 (B):

P(d2ϕ) = P(dd⊥ϕ) = 0, P⊥((d⊥)2ϕ) = P⊥(dd⊥ϕ) = 0,

P�((d⊥)2ϕ) = P�(d2ϕ) = 0.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 8 No. 1 2014



www.manaraa.com

PROPERTIES OF THE RAY TRANSFORMS 109

Proof. The equalities P(d2ϕ) = P(dd⊥ϕ) = 0 are well known (for instance, see [3]). Let us prove only
that P⊥((d⊥)2ϕ) = 0 since the remaining equalities are established similarly.

By the definition of P⊥, we have

(P⊥((d⊥)2ϕ))(s, θ) =

√
1−s2∫

−
√

1−s2

(
∂2ϕ

∂(x2)2
η1η1 − ∂2ϕ

∂x1∂x2
η1η2 − ∂2ϕ

∂x1∂x2
η1η2 +

∂2ϕ

∂(x1)2
η2η2

)
dt. (5)

Note that

η1 =
∂x2

∂t
, η2 = −∂x1

∂t
,

∂η1

∂t
=

∂η2

∂t
= 0.

Inserting these into (5), we infer

(P⊥((d⊥)2ϕ))(s, θ)

=

√
1−s2∫

−
√

1−s2

(
∂2ϕ

∂(x2)2
∂x2

∂t
η1 − ∂2ϕ

∂x1∂x2

∂x2

∂t
η2 +

∂2ϕ

∂x1∂x2

∂x1

∂t
η1 − ∂2ϕ

∂(x1)2
∂x1

∂t
η2

)
dt

=

√
1−s2∫

−
√

1−s2

d

dt

(
∂ϕ

∂x2
η1 − ∂ϕ

∂x1
η2

)
dt =

(
∂ϕ

∂x2
η1 − ∂ϕ

∂x1
η2

) ∣∣∣∣
√

1−s2

−
√

1−s2

= 0,

which completes the proof.

The following describes the relationship between the ray transforms and the Radon transform:

Theorem 2. For every ϕ ∈ H2
0 (B), we have:

P((d⊥)2ϕ) = P⊥(d2ϕ) = 2P�(dd⊥ϕ) =
∂2

∂s2
(Rϕ).

Proof. Since

ϕ|∂B =
∂ϕ

∂x1

∣∣∣∣
∂B

=
∂ϕ

∂x2

∣∣∣∣
∂B

= 0,

we have

∂2

∂s2
(Rϕ)(s, θ) =

√
1−s2∫

−
√

1−s2

[
∂2ϕ

∂(x1)2
cos2 θ + 2

(
∂2ϕ

∂x1∂x2

)
sin θ cos θ +

∂2ϕ

∂(x2)2
sin2 θ

]
dt

=

√
1−s2∫

−
√

1−s2

[
∂2ϕ

∂(x1)2
(ξ2)2 + 2

(
∂2ϕ

∂x1∂x2

)
(−ξ1)ξ2 +

∂2ϕ

∂(x2)2
(−ξ1)2

]
dt =

(
P((d⊥)2ϕ)

)
(s, θ).

Similarly,

∂2

∂s2
(Rϕ)(s, θ) =

√
1−s2∫

−
√

1−s2

[
∂2ϕ

∂(x1)2
(η1)2 + 2

(
∂2ϕ

∂x1∂x2

)
η1η2 +

∂2ϕ

∂(x2)2
(η2)2

]
dt

=
(
P⊥(d2ϕ)

)
(s, θ).
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Now, consider (P�(dd⊥ϕ)):

(P�(dd⊥ϕ))(s, θ) =

√
1−s2∫

−
√

1−s2

[
2

∂2ϕ

∂x1∂x2
sin θ cos θ +

1
2

(
∂2ϕ

∂(x1)2
− ∂2ϕ

∂(x2)2

)(
cos2 θ − sin2 θ

)]
dt.

Hence,

(P((d⊥)2ϕ))(s, θ) − (P�(dd⊥ϕ))(s, θ) =
1
2

√
1−s2∫

−
√

1−s2

(
∂2ϕ

∂(x1)2
+

∂2ϕ

∂(x2)2

)
dt =

1
2
(R(Δϕ))(s, θ).

As is well known [4],

(R(Δϕ))(s, θ) =
∂2

∂s2
(Rϕ)(s, θ);

therefore,

(P�(dd⊥ϕ))(s, θ) =
1
2

∂2

∂s2
(Rϕ)(s, θ).

This completes the proof.

Suppose that f ∈ L2(B) is a function and u ∈ H1(S2(B)) is a symmetric 2-tensor field u =
(d⊥)2ψ + dd⊥φ + d2ϕ with potentials ϕ, φ, ψ ∈ H2

0 (B). In [3], there were proved the stability estimates

‖f‖2
L2(B) ≤ C1‖Rf‖2

H1(Z), (6)

‖(d⊥)2ψ‖2
L2(S2(B)) ≤ C2

(
‖u‖H1(S2(B))‖Pu‖L2(Z) + ‖Pu‖2

H1(Z)

)
(7)

with the constants C1 and C2 independent of f and u respectively.
Decomposition (3), (4), estimate (6), and the properties of the ray transforms give a stability estimate

stronger than (7) for the operator P and also estimates for P⊥ and P�:

Theorem 3. Let u = (d⊥)2ψ + dd⊥φ + d2ϕ with potentials ϕ, φ, ψ ∈ H2
0 (B). Then we have the

stability estimates

‖(d⊥)2ψ‖2
L2(S2(B)) ≤ C‖Pu‖2

H1(Z), (8)

‖d2ϕ‖2
L2(S2(B)) ≤ C⊥‖P⊥u‖2

H1(Z), (9)

‖dd⊥φ‖2
L2(S2(B)) ≤ C�‖P�u‖2

H1(Z), (10)

where C, C⊥, and C� are constants independent of u.

Proof. Starting from the definitions of P, P⊥, and P� for an arbitrary symmetric 2-tensor field v, we
have

(Pv) = (Rv11) sin2 θ − 2(Rv12) sin θ cos θ + (Rv22) cos2 θ,

(P⊥v) = (Rv11) cos2 θ + 2(Rv12) sin θ cos θ + (Rv22) sin2 θ,

(P�v) = −(Rv11) sin θ cos θ + (Rv12)(cos2 θ − sin2 θ) + (Rv22) sin θ cos θ.

Solve this system for (Rv11), (Rv12), and (Rv22):

(Rv11) = (Pv) sin2 θ − 2(P�v) sin θ cos θ + (P⊥v) cos2 θ, (11)

(Rv12) = −(Pv) sin θ cos θ + (P�v)(cos2 θ − sin2 θ) + (P⊥v) sin θ cos θ, (12)

(Rv22) = (Pv) cos2 θ + 2(P�v) sin θ cos θ + (P⊥v) sin2 θ. (13)
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Prove (8); estimates (9) and (10) are established similarly. By Theorem 1,

(P�((d⊥)2ψ)) = (P⊥((d⊥)2ψ)) = 0, (P((d⊥)2ψ)) = (Pu).

Then from (11) we obtain (R((d⊥)2ψ)11) = (Pu) sin2 θ. Estimate ‖R((d⊥)2ψ)11‖2
H1(Z):

‖R((d⊥)2ψ)11‖2
H1(Z)

=
∫

Z

[
(R((d⊥)2ψ)11)2 +

(
∂

∂s
(R((d⊥)2ψ)11)

)2

+
(

∂

∂θ
(R((d⊥)2ψ)11)

)2
]

dsdθ

=
∫

Z

[
(Pu)2 sin4 θ +

(
∂(Pu)

∂s

)2

sin4 θ +
(

∂(Pu)
∂θ

sin2 θ + 2(Pu) sin θ cos θ

)2
]

dsdθ.

Since (a + b)2 ≤ 2(a2 + b2) for all a and b, we have

‖R((d⊥)2ψ)11‖2
H1(Z) ≤

∫

Z

(Pu)2 sin2 θ(1 + 7 cos2 θ) + sin4 θ

[(
∂(Pu)

∂s

)2

+ 2
(

∂(Pu)
∂θ

)2
]

dsdθ.

Taking it into account that sin2 θ(1 + 7 cos2 θ) ≤ 16/7 and sin4 θ ≤ 1 for all θ, we obtain

‖R((d⊥)2ψ)11‖2
H1(Z) ≤

16
7

‖Pu‖2
H1(Z).

Analogously, it follows from (12) and (13) that

‖R((d⊥)2ψ)12‖2
H1(Z) ≤ 2‖Pu‖2

H1(Z), ‖R((d⊥)2ψ)22‖2
H1(Z) ≤

16
7

‖Pu‖2
H1(Z)

respectively. By (6), we infer

‖((d⊥)2ψ)11‖2
L2(B) ≤ C1‖R((d⊥)2ψ)11‖2

H1(Z) ≤
16
7

C1‖Pu‖2
H1(Z),

‖((d⊥)2ψ)12‖2
L2(B) ≤ C1‖R((d⊥)2ψ)12‖2

H1(Z) ≤ 2C1‖Pu‖2
H1(Z),

‖((d⊥)2ψ)22‖2
L2(B) ≤ C1‖R((d⊥)2ψ)22‖2

H1(Z) ≤
16
7

C1‖Pu‖2
H1(Z),

but

‖((d⊥)2ψ)11‖2
L2(B) + 2‖((d⊥)2ψ)12‖2

L2(B) + ‖((d⊥)2ψ)22‖2
L2(B) = ‖(d⊥)2ψ‖2

L2(S2(B)),

and, therefore,

‖(d⊥)2ψ‖2
L2(S2(B)) ≤

60
7

C1‖Pu‖2
H1(Z) = C‖Pu‖2

H1(Z).

Theorem 3 is proved.

2.1. Formulas for Reconstructing the Potentials
The inversion formula for the Radon transform is well known:

f(x) =
1

4π2

2π∫

0

∞∫

−∞

∂2(Rf)
∂s2

(p − x1 sin θ + x2 cos θ, θ) ln |p| dpdθ.

Since we consider f ∈ Hk(B) in the present article, we have (Rf)(s, θ) = 0 for |s| > 1. Consequently,
the inversion formula can be rewritten as

f(x) =
1

4π2

2π∫

0

∫

Px,θ

∂2(Rf)
∂s2

(p − x1 sin θ + x2 cos θ, θ) ln |p| dpdθ, (14)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 8 No. 1 2014



www.manaraa.com

112 SVETOV

where Px,θ = {p | |p − x1 sin θ + x2 cos θ| ≤ 1}.

Theorem 4. Let u = (d⊥)2ψ + dd⊥φ + d2ϕ with potentials ϕ, φ, ψ ∈ H2
0 (B). Then we have the

formulas for reconstruction of ϕ, φ, and ψ:

ψ(x) =
1

4π2

2π∫

0

∫

Px,θ

[Pu]
(
p − x1 sin θ + x2 cos θ, θ

)
ln |p| dpdθ,

φ(x) =
1

2π2

2π∫

0

∫

Px,θ

[P�u]
(
p − x1 sin θ + x2 cos θ, θ

)
ln |p| dpdθ,

ϕ(x) =
1

4π2

2π∫

0

∫

Px,θ

[P⊥u]
(
p − x1 sin θ + x2 cos θ, θ

)
ln |p| dpdθ.

These formulas follow from (14) and Theorem 2.

2.2. Componentwise Inversion Formulas

If a ray with direction vector ξ = (− sin θ, cos θ) and normal vector η = (cos θ, sin θ) passes through
the point x = (x1, x2) then s = x1 cos θ + x2 sin θ. Consequently, given a function f and a symmetric
2-tensor field u, we have

(Rf)(s, θ) = (Rf)(x, θ), (Pu)(s, θ) = (Pu)(x, θ),

(P⊥u)(s, θ) = (P⊥u)(x, θ), (P�u)(s, θ) = (P�u)(x, θ).

The inversion formula for R was obtained in [3]:

f(x) =
1
4π

(−Δ)1/2

2π∫

0

(Rf)(x, θ) dθ, (15)

where (−Δ)1/2 is the pseudodifferential operator for which

F [(−Δ)1/2g](y) = |y|F [g](y).

Henceforth, F [·] stands for the application of the Fourier transform.

Let u = (d⊥)2ψ + dd⊥φ + d2ϕ with potentials ϕ, φ, ψ ∈ H2
0 (B). In [3], there were also obtained the

following formulas for reconstructing the solenoidal part (d⊥)2ψ of a symmetric 2-tensor field u:

((d⊥)2ψ)11(x) =
1
8π

[
(−Δ)1/2

2π∫

0

(3 sin2 θ − 1)(Pu)(x, θ)dθ − (−Δ)−1/2

2π∫

0

∂2(Pu)
∂(x1)2

(x, θ) dθ

]
,

((d⊥)2ψ)12(x) =
1
8π

[
(−Δ)1/2

2π∫

0

(−3 sin θ cos θ)(Pu)(x, θ) dθ − (−Δ)−1/2

2π∫

0

∂2(Pu)
∂x1∂x2

(x, θ) dθ

]
,

((d⊥)2ψ)22(x) =
1
8π

[
(−Δ)1/2

2π∫

0

(3 cos2 θ − 1)(Pu)(x, θ) dθ − (−Δ)−1/2

2π∫

0

∂2(Pu)
∂(x2)2

(x, θ) dθ

]
.

We significantly simplify these for P and obtain similar formulas for P⊥ and P�.
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Theorem 5. Let u = (d⊥)2ψ + dd⊥φ + d2ϕ with potentials ϕ, φ, ψ ∈ H2
0 (B). Then the following

holds for the reconstruction of the solenoidal part (d⊥)2ψ of a symmetric 2-tensor field u:

((d⊥)2ψ)ij(x) =
1
4π

(−Δ)1/2

2π∫

0

ξiξj(Pu)(x, θ) dθ.

For the potential part d2ϕ of a symmetric 2-tensor field u, we have

(d2ϕ)ij(x) =
1
4π

(−Δ)1/2

2π∫

0

ηiηj(P⊥u)(x, θ) dθ.

For reconstructing the potential part dd⊥φ of a symmetric 2-tensor field u, we have

(dd⊥φ)ij(x) =
1
4π

(−Δ)1/2

2π∫

0

(ξiηj + ξjηi)(P�u)(x, θ) dθ.

Proof. By Theorem 1,

(P�((d⊥)2ψ)) = (P⊥((d⊥)2ψ)) = 0, (P((d⊥)2ψ)) = (Pu).

Then from (11)–(13) we obtain

(R((d⊥)2ψ)11) = (Pu) sin2 θ, (R((d⊥)2ψ)12) = (Pu)(− sin θ cos θ),

(R((d⊥)2ψ)22) = (Pu) cos2 θ,

i.e., (R((d⊥)2ψ)ij) = ξiξj(Pu). Applying (15), we infer

((d⊥)2ψ)ij(x) =
1
4π

(−Δ)1/2

2π∫

0

(R((d⊥)2ψ)ij)(x, θ) dθ =
1
4π

(−Δ)1/2

2π∫

0

ξiξj(Pu)(x, θ) dθ.

The remaining two formulas are proved similarly.

2.3. The Projection Theorem

Consider (Rηf)(s) = (Rf)(s, θ) as a function of s for fixed θ. Recall that η = (cos θ, sin θ). Formulate
the so-called projection theorem for the Radon transform operator:

Proposition. If f ∈ C∞(B) then F [Rηf ](σ) =
√

2πF [f ](ση), where σ ∈ R.

For the proof of the proposition, the reader is referred, for example, to [8].

Consider (Pηu)(s) = (Pu)(s, θ),
(
P⊥

η u
)
(s) = (P⊥u)(s, θ) and

(
P�

ηu
)
(s) = (P�u)(s, θ) as functions

of s for some fixed θ.

Theorem 6. If ϕ ∈ H2
0 (B) ∩ C∞(B) then

F [Pη((d⊥)2ϕ)](σ) = −σ2
√

2πF [ϕ](ση),

F
[
P⊥

η (d2ϕ)
]
(σ) = −σ2

√
2πF [ϕ](ση),

F
[
P�

η (dd⊥ϕ)
]
(σ) = −σ2

√
π/2F [ϕ](ση),

where σ ∈ R.
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Proof. By the proposition,

F [Rηϕ](σ) =
√

2π F [ϕ](ση), σ ∈ R.

Theorem 2 and the properties of the Fourier transform

F
[
∂2f

∂t2

]
(w) = (iw)2F [f ](w)

yield

F [Pη((d⊥)2ϕ)](σ) = F
[
∂2(Rηϕ)

∂s2

]
(σ) = (iσ)2F [Rηϕ](σ) = −σ2

√
2πF [ϕ](ση), σ ∈ R.

The remaining two formulas are proved similarly.
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